My Personal Search-Engine

Mark A.C.J. Overmeer

AT Computing bv
Toernooiveld 104, 6525 EC,
Nigmegen, The Netherlands
markov@ATComputing.nl

Abstract

We have to reconsider whether the current structure of search engines provides us
with useful results. A modular approach to constructing spiders will facilitate more
development, hopefully resulting in new information retrieval techniques. A layered
architecture will improve our access to data on The Net, which is crucial in our

information driven society.

Key words: Restructuring search engines. Open search engine infrastructure.

1 Search Engines

Back in 1994, when World-Wide Web
was just emerging, the first index of
sites in The Netherlands appeared. It
was named the Dutch Home Page[1].
Of course, today there are large
number of such indexing sites, such
as Yahoo![2] — at that time there
were only 10 sites in the whole of the
Netherlands and they could easily be
displayed on one small page!

Within a year, the amount of work to
maintain the index overwhelmed this
initiative. Software was developed
to ease the manual administrative
task. New sites were first registered
by their web master, by submitting
a form. The site was then visited by
our maintainer, who checked it for

Preprint submitted to Elsevier Preprint

credibility and importance: personal
home-pages where only included
when they contained information
which was useful for other people
than family and friends. When these
tests passed successfully, the site was
added to the database from which
we produced our own pages.

However, with the number of regis-
tered sites growing exponentially the
drawbacks of adding those hundreds
of new sites by hand increased to
such a level that it became harder
and harder to manage. It is not use-
full to put many thousands of sites
into one page, so you had to clas-
sify the sites into categories. As the
number of sites within each category
grew the category definitions had to
become narrower to limit the num-

21 May 1999

ber of sites in each of them. This
strategy worked for three years but
the number of categories grows ex-
ponentially too.

For an example of a site that indexes
sites by category see Yahoo! which is
the largest such site on the Internet.
It claims to have half a million sites
registered in twenty five thousand
categories. A single organization or
company will fit in a huge number
of detailed categories but, is usually
listed under a small number of major
subjects, and will not be listed under
all of its other activities.

Categorization has its own problems,
which are best illustrated by an ex-
ample. An university will be active
in many specialized fields, but is not
listed under all of those hundreds
of distinctive subjects. This means
that someone looking for informa-
tion about, say super-conductors, in
the index ends up with companies
specialized in that area, but not with
this university which may be per-
forming leading research in this area.

Specialized subject indices which are
maintained by people ‘in the field’
are useful, so long as they are up-
dated regularly (which is often not
the case) and well known by its
target-community. In such an index,
a university department will get its
place. However, for many subjects
these indices are not well maintained,
and they often not easy to find. As
the Internet grows even these lists
can become overwhelming. Addition-
ally, knowing about the existence of
a site related to a subject, does not
give one the knowledge about what

is actually present there.

As the amount of information on
WWW grew, textual search systems
were introduced. These search en-
gines (also called spiders or crawlers)
do not try to categorize sites, but
use brute-force methods to scan for
pages where certain keywords can be
found. With search-engines, the ef-
fort for the builders of the indexing
site has shifted from manual admin-
istration to writing smart software.

Search-engines try to apply natural
language techniques, which can as-
sist searchers in finding knowledge
which is does not the highest priority
of the site-publisher’s point of view.
A spider will find this knowledge
whereas an index will not. Thus, spi-
ders that categorise sites have more
control over the quality of the infor-
mation they show to their visitors be-
cause of the intelligence used in their
construction. Spiders can be more
useful to the searcher because they
find items which are not in the site’s
description and hence transcend the
restrictions imposed by an index.

However, a spider will return many
results — a clear case of quantity and
not quality and the searcher is sub-
ject to information overload.

Most people use search-engines
nowadays, instead of indexes. This is
not because their results are satisfy-
ing, but because the indexing system
give less useful results.

I assert that the usefulness of general
indexing sites has come to an end.
This paper suggests a layered archi-

tecture which improve the access of
search-engines to data on The Net.
This will improve their quality, and
thereby benefit everyone who has in-
terest in Internet.

2 Current Strategies

Spiders are certainly not delivering
a good quality result. Various smart
algorithms have been developed to
find the pages which best serve the
query of the user (you can find more
about the current strategies at Search
Engine Watch[3]). However, every-
one will have experience about the
huge list of unwanted hits you get
in response to your simple question.
Current text-retrieval algorithms are
designed to work on large amounts
of data but not for the huge quantity
on Internet.

Real spiders

Going through all the references re-
turned by a spider takes a lot of time.
The human interfacing is usually a
disaster; you can see that the pro-
grammers found ” getting the thing to
work” was complicated enough, and
they are happy that they can at least
deliver some results.

Apart from the shear number of refer-
ences returned a lot are outdated be-
cause the network is too large to get
a timely overview. AltaVista[4] cur-
rently can only visit a site once every
seven weeks and they retire sites from
their database after a few failed fetch

attempts, So it takes months before
their database is correct.

The best part of current search en-
gines is that they retrieve their data
very quickly. The performance of
computers in not the bottle-neck.

The real spiders, fetch all their pages
themselves. They are built on ex-
pensive hardware (huge quantities of
disk-space and memory is required)
and complicated software. Figure 1

Searchable Index

4 |

[0 |
—f | [
' Dataextraction !| |1 Datacollection !
! | ! |
: I : I
' Pagefetch l ' User Interface l
| 18k |

Fig. 1. Basic (classic) real spider.

shows the structure of the simplest
of those spiders. Typically, this func-
tionality is spread over a few comput-
ers to get the required performance.

To solve the drawbacks of ‘real’-

spiders, three variations were intro-
duced:

specialization, improving results
by reducing the number of searched-
sites,

meta-spiders, improving results
by combining the results of a few
spiders or,

meta-information, adding infor-
mation to (HTML) pages which
is to used by spiders for building
indexes.

Specialized spiders

Specialized spiders try to improve
the results of a spider by manually
adding a preselection of subject ma-
terial. This results in something be-
tween a real spider and a manual
index. As long as the list of related
sites is not too large and well main-
tained, this will work better than a
normal indexing-site with categories.
However, a lot of manual interference
is required.

Meta-spiders

Meta-spiders call many ‘real’-spiders
and combine their results, as shown

collector —

Real
Spiders

|
|
|
|
| ranker
|
|
|
|

user interface

Fig. 2. A meta-spider.

in figure 2.

The meta-spider passes the users
request to many real-spiders which
query in their own databases and re-
turn appropriate results. The meta-
spider counts how many real-spiders
return a certain page. Then those
pages are ranked and returned to the
user. This way, the collective result
might be better than each separate
result.

This procedure may result in less op-
timal coverage than that of a single
search engines: the combined perfor-
mance leads to the average result, a
single engine may be better balanced.

Meta-information

Steps are taken by a sites maintainer
to add information to documents to
facilitate the spiders. HTML meta-
tags keywords and description are
examples for this extensions. In this
situation, the publisher of the docu-
ment is adding human intelligence.

An example of HTML with meta-
information:

<HTML>

<HEAD>

<TITLE>Wildlife inHolland</TITLE>
<META NAME=keywords
CONTENT="bears, apes, rabbits">
<META NAME=description
CONTENT="An overview of wildlife

in The Netherlands.">
<BODY>

The NAME-parameters of the META
are not officially standardized, but
are commonly used. Most spiders
treat them specially. However, this
method relies upon accurate abstrac-
tion of the content of a page, which is
reliant on the person developing the
page. These fields are often abused
by sex or car-selling companies to
lure visitors.

The Web is also changing from pages
mainly being written in HTML into
providing pages in multiple formats.

More and more, the documents are
published in doc, XML, pdf, etc. In
most of those formats, there is no way
to specify meta-information.

For all these reasons, this way of
adding meta-information has only
limited use.

The librarian Way

A different method to providing ex-
tra information is by setting-up a
library like structure. A few projects
try to find solutions for the massive
amount of information this way, for
instance Harvest[10], CHOICE[11],
and DESIRE[12]. These systems
add BibTgX-like information to the
pages. whilst adding META-tags to
HTML-pages is relatively easy, the
librarian way requires more effort
to capture the content of the page.
A site has to run a special service
alongside its web-server that sup-
plies the meta-information to the
indexing-systems.

But, is everyone willing to become
a librarian? For institutes, universi-
ties, and such, the effort to comply
to this system is not too high, but it
is a lot to ask small companies and
private persons to use this system.
A large part of the knowledge on In-
ternet will never be contained in this
information-structure.

3 Identifying the problems

Are we giving-up on real-spiders?
Should we try to focus on the qual-
ity of ‘real’-engines by solving their
problems directly?

One of the main reasons why the
‘real’-spiders are not able to fulfill
our needs to discover information
is that their development is slowed
down by their current structure. Ev-
eryone who wants to experiment with
improving them has to re-implement
all parts of the system — each time.
Bright new ideas can not be exper-
imented with unless a lot of money
is invested. Building a useful search
engine takes a lot of effort and time.

When ‘real’ spiders are improved,
both meta-spiders and specialized
spiders become superfluous. When
implementation is easier, more varia-
tion can be tested and "My personal
search engine.” is born.

Fetching the pages

Severe problems exist with the way
spiders behave with respect to ob-
taining their raw data. Some of the
worst I will mention here:

e Fach search-engine needs to re-
trieve the contents of pages held on
web sites on regular bases to build
their search tables. Engines which
span the whole WWW are taking
more and more time to visit all
the pages to check their existence
and to index their content. As
mentioned earlier AltaVista needs

about seven weeks to scan the Net
once. Some pages, however, change
hourly. Quite some delay!

e Each Spider uses its own method
to fetch pages. The first versions
are typically a rapid-firing! one,
which is easier to implement but
destructive for the visited sites;
blocking all access to them for real
users of the site. The HTTP/1.1-
protocol[6] performs much better
then its 1.0 predecessor, but seems
too complicated for some imple-
mentors to utilise successfully.

e Some producers of server-software
(no names here) are stimulating
web site designers to put all of their
pages into a private database. Ac-
cess to these pages demands a lot
from the underlying (operating?)
system. These systems are heavily
loaded even by a few normal users
and any superfluous access should
be avoided to keep the system sta-
ble.

e There are many spiders. The Big
Search-Engine Index[7] lists 420
search-engines. Happily not all
those spiders cover the whole Inter-
net; some are related to a country,
a language, or a subject. No-one
is happy when all of these spiders
extract all of the pages from their
databases over and over again.
It can seem that only spiders are
interested in your content.

e A large number of interesting sites
require registration. Some even re-
quire payment. So these sites are
not indexed, even if the person who

U A rapid-firing spider fetches pages
site-by-site. The site it is working on is
fully occupied serving that spider, hence
not able to serve ‘normal’ visitors.

is looking for facts might be willing
to register or pay.

The badly-implemented spiders and
the exhaustive database-retrievals
have forced many sites to block ac-
cess to every spider. All spiders obey
the robot.txt convention, which is
described in [9]. From own count I
estimate about 30 percent of all sites
currently block all access by spiders.
This then looses that site a lot of
visitors: because about 35 percent
of the people find ones — averaged
sized — site via an engine. They may
decide to bookmark your site and
become a regular visitor. This only
works if you are listed!

In summary, there are many reasons
for the very bad hit-rate on pages. An
investigation made by Search-Engine
Watch[3] shows that even largest en-
gines of today only get their hands on
only 8 to 27 percent of the existing
pages. And this number is decreasing.

Spider Functions

Each Spider has to develop a page-
fetching mechanism before it can con-
centrate on how to work with the raw
data they retrieve. Ignoring for the
moment page-fetching, what kinds of
data are does the spider supply to
the ‘user’ and how will the searching
work?

e Some spiders build indexes based
HTML fetched over HT'TP alone.
Other spiders also supply search
facilities on other document for-
mats (XML, PDF, doc), other

protocols (FTP, Usenet), or host-
names. Even some experimental
indexing of images is available, for
example from AltaVista.

e A number of Spiders do a blunt
search on keywords, possibly with
some boolean algebra (which few
people understand). Others try
to build artificial intelligence (or
fuzzy-search, or whatever you
want to call it) into their indexing.

e Some know about synonyms, and
include those in their search. Un-
fortunately this is usually only im-
plemented in English.

e The ability to specify the language
a page is in is common, however
often you have no possibility to
restrict your search to the lan-
guages you know. The meaning of
a word can differ between two lan-
guages: even if you do speak both
languages you need to be able to
restrict to one language.

e Most spiders show results by dis-
playing a part of the page which
contains the keyword. In some
cases, the first few lines are shown.
Other spiders show the actual
place where the word was found.
When the page contains the meta-
tag ‘description’;, this is usually
displayed, which is often a better
representation of the content of a
document then one paragraph is.

Many variations on many themes.
But...I never find the answer to my
questions fast. Why?

Blocked Development

Many bright ideas have been im-
plemented in search engines. Some
spiders have a good collection of
such functions (as are described in
the previous section) and contain a
relatively good set of data to apply
them to. But at the same time a lot
of features are left-out because of
a lack of time and financial means,
or intellectual property problems.
Many promising ideas relating to
small parts of the search-process are
not implemented because one needs
to build a complete search-engine,
from page-fetch to display, or have
nothing at all.

If we are able to remove some of the
blocks to implementing new ideas, we
will see a better behavior, hence a
more valuable World Wide Web.

4 Redesigning the Engines

Only open architectures can help to
extend the current search engines.
This way, we might be able to spend
time on improving our search tech-
niques instead of reinventing the
same thing all the time.

The main parts of a Spider are

(1) the page-fetching mechanism;

(2) the index-building and related
search-facility; and

(3) the user-interface.

Why should they be so tightly con-
nected as in current implementa-

tions? We can decouple these parts.
See figure 3, where the parts are

,,,,,,,,,,

,,,,,,,,,,

Fig. 3. Restructured spider.

split. In the figure, the index and
user-interface are coupled into one
machine, but this need not be the
case.

When we look at the index-building
(‘page inventory’) and search part,
we see a lot of easy-separable func-
tions which can be modularized. The
modularization is the opportunity
to develop new ideas. Modules can
be released to the Public Domain,
but there may also be commercial
products. To ‘build’ a new Spider
you combine a few Public Domain
modules, your own modules, and
maybe some commercial modules.
Run them over the publicly available
set of pages, and pass the results to
your preferred interface.

This is easy to say but not that easy
to implement. Let us now focus on
the separate parts of a spider, and see
how they could be structured to fit
into a m modular system.

The Page-Fetch

We must solve the problem of page-
fetching for once and for all. It is to-
tally ridiculous that hundreds of en-
gines access each site. However, it is
not feasible to forbid spiders to be
built. What s feasible is to collect all
data on central machines, placed in
tactical locations, and allow everyone
to attach to that machine to build
their spider.

It is not practical to put all of the
data on one machine at one point in
‘“The Web’. The exploding amount of
information to be found has resulted
in existing (centralized) spiders tak-
ing too long between visiting a site.
One new huge central place will have
the same performance problems.

It will be better to arrange things per
backbone, per language, or per coun-
try (a combination will work best). ?

]
0
el
| -

Spider |
fetch

L |fetch

\ —1O
0

Fig. 4. Localized Fetchers.

Localized fetching facilities (figure 4)
will improve the quality of the re-
trievals because they can be tuned

2 Of course these are ‘virtual servers’,
possibly hosted on the same machine.

and influenced by people who know
about the local situation. For in-
stance, about what hours are best to
scan the sites; night-time is different
everywhere. The revisiting frequency
should be determined by the change-
rate of data, not by the size of ‘the
Net’.

Next to this, more and more pages
are made in other languages than En-
glish. We have to take into account
that more and more Internet users
are not able to understand English
(and that average American is not
able to understand Chinese). The re-
quirement to search ”the whole wide
World” will decrease. Spiders will lo-
calize with it.

Each server (fetcher) repeatedly
scans sites on its controlling domain.
New spider implementations are in-
formed by the fetchers when they
find a changed page which is in the
target range of the specific spider.
These then fetch their personal copy
of this page from the fetcher’s stor-
age to process and build their private
index with.

Each locally active central fetcher
knows were to find the other fetch-
ers. If the storage-server finds pages
in a language other than it serves, it
passes this data on to an other server
which is capable of understanding
that language correctly.

To be successful, the fetchers must be
open systems. They do not require to
be very fast: the update to the spi-
ders will be asynchronous with the
site-scan. Techniques can be based on
current retrieval software.

Some commercial sites require regis-
tration of visitors or even payments.
Of course, they want to have as many
visitors as they can, but they cannot
be searched through by current pub-
lic spiders. In the structure proposed
here, we can build applications who
deliver the keywords and description
of pages of a closed site to the near-
est fetcher, which passes this on. Of
course, spiders will ask users if they
want to pay for information when a
search is made, to avoid disappoint-
ments.

Another extension can be made to
reduce superfluously checking huge
sites with mainly static data. A sim-
ple application scans the site locally
(so on the system where the data re-
sides) and informs the fetcher which
pages changed.

This structure has the following ad-
vantages over today’s techniques:

e Sites can open their doors to be-
ing searched again: the current rea-
sons for closing (too many requests
by spiders, poor implementations)
are resolved. Therefore, participat-
ing spiders will get a much better
coverage.

e [t is easy to build facilities so that
web masters can add information
to their sites which pleases them:
how often to scan the site, which
authorization should be used,
which parts should be skipped,
where it is located physically...
When they have to enter this data
only once, they will be more willing
to provide useful data, than when
it has to be entered at hundreds of
places. This adds to the trustwor-

thiness of the spider’s results.

e Engines are cheaper to build, be-
cause they do not need to store all
pages themselves, only to process
them into indexes. It is practical to
locate Spiders physically close to
the fetchers, but not required.

e On Internet the traffic will be re-
duced. Don’t worry, no doubt it
will be filled again in no time with
other applications.

The ISPs and backbone-providers
profit when sites are indexed better,
because they will be used more. It is
not inconceivable that they will be
willing to provide the central-storage
for their network.

The search-index

The searchable index is the main
playroom for commercial and non-
commercial developers. Three func-
tions are used in implementing the
index. At first, the extractor selects
the fetched pages which are of in-
terest. This processes the contents
of the pages and passes it into the
search-able indexr that builds tables
to be searched. On the user’s de-
mand, data from these tables is as-
sembled by the collector, and then
passed to the user-interface.

Some implementations will prefer
to do a lot of work in the extrac-
tor, so the collector has less work
and is faster. Some implementations
will put more effort into develop-
ing the collector, and avoid wasting
computer-power because no-one ever
asks for the results.

10

Basically, the extractor and collector
will contain a lot of modular func-
tions. A short description of what is
likely to be there:

e Translations from HTML, PDF,
Postscript, and friends into index-
able text.

e Search algorithms: plaintext search,
fuzzy search, phonetic search,
regular-expression search, ...

e Language detection. Language de-
pendencies.

e Knowledge of synonyms in many
languages.

e Translations of searches between
languages.

e Site-recognition and site-structure
discovery.

There are a lot more functions that
could be applied to the data which
have no direct relationship to search
activities:

HTML, XML syntax checking.
Spell-checking.
Dead-links checks.
Language scans for
writers.

dictionary

Of course, we cannot force everyone
to give away their own implementa-
tions of these modules, but a more
open attitude will improve the over-
all spider’s quality.

The User-Interface

The final step is the Human-Computer
Interface. This interface accepts
requests from the user, translates
them into calls for the collector and
presents the results received.

The increasing performance of sys-
tems enable a complicated exchange
of information between the search-
engine and the searcher. This is re-
quired to reduce the number of wrong
answers we get from our initial ques-
tions. One experimental interface
trying this is described in [14].

Generalization

In figure 5, a generalization is shown
of the private versus open model of
spiders. Each spider designer needs
to find a balance between private de-
velopment, public domain parts, and
commercial services. For each level of
public service, there can be many dif-
ferent implementations.

5 Who Benefits

Who benefits from search-engines
which use as many public parts as
possible? Everyone. The benefits are
numerous but most valuable to our
modern society is finding the right
information. More public facilities to
develop spiders will improve devel-
opment.

But what is the consequence for the
parties involved?

The site-maintainers: More sites
will open up their pages, because
they are less bothered by the en-
gines. With minimal expense, their
data can be found. One central
administration point is provided
where new sites are registered.

11

Access will be optimally imple-
mented, because the software is
only written once. Even data on
pay- or registration-required sites
can be looked-up in all public spi-
ders.

The users: People searching for in-
formation profit most: more sites
will open up their pages, so more
data is searched. New algorithms
can be tested easily, as well in inter-
facing as in retrieval methods. This
will give better search engines.

Spider-developers: Organizations
which develop spiders save a lot
of money and effort, when they
easily can hook-up to the fetch-
ing system. They can concentrate
on what makes them special and
spend more money on that.

Service providers: The compa-
nies involved in selling Internet-
bandwidth (ISPs) will see a de-
crease in network capacity require-
ments for the search-facilities,
However, when the search works
better more people will use the Net
(they always proclaim that ”usage
grows as fast as they can deliver”).

A new role will emerge for them
to develop and maintain the fetch-
ers and possibly hosting the new
spiders, too.

6 Phased Implementation

The need for a new setup is acute. A
proposed schedule to transform the
way we search for information on the
web is presented below:

(1) Start some fetchers. Especially
for small languages, this is

| iimproved:
! iclassic | |
| ispiders |

| new spiders

= shared

User Interface

Collectors

Search indexes

Extractors

Page storage

Page fetch

Fig. 5. Generalized spider designs.

rather inexpensive and easily
made. For the English language,
more work has to be done: one
server is not enough to scan all
web sites Some free software de-
velopers have already produced
packages which can be deployed
without too many changes.

The storage-servers have to ex-
change information, for instance
when they find pages in a lan-
guage they do not serve. This
protocol has to be developed,
but can be based on normal
HTTP for the communication.
The interface where adminis-
trators can register and spec-
ify how their site should be
downloaded should make sites
to open-up their doors for the
central fetcher. This shall be
combined with promotional ac-
tivities.

Modules for the public and pri-
vate extractors and collectors
are already wide-spread. In the

12

Perl libraries (CPAN [13]), for
instance, quite a lot of useful
modules can be found. The in-
terface to the storage can be
very simple on file-by-file bases.
The user-interface based on ex-
isting modules can start with
a simple plaintext search and
textual output although alter-
natives are being developed.
There will be simple interfaces
with rough results, which can be
used by anyone, but also com-
plex search methods designed
for trained librarians or other
specialists. An experimental
version of such an interface is
described in [14].

When a first simple implemen-
tation is ready, new spiders
should be stimulated to use the
configuration. It might be easy
to attract smaller spiders: just
because they save a lot of work
writing code and costs for disk-
space and network-access.

(7) When more and more sites
open-up for the central fetching,
the existing spiders will be more
willing to change. Large engines
might never be willing to com-
mit to the proposed structure.

7 Conclusions

Naturally, this overview is extremely
brief. Many more details are obvious,
and some difficult design work and
then implementation has to be per-
formed for the distributed fetching of
pages. However, this has been done
before.

The aim of this paper is to call for re-
consideration of whether the current
developments in search engines are
leading us anywhere useful. Work-
groups need to be formed to investi-
gate details.

References

[1] H.C.M. Withagen and M.A.C.J.
Overmeer. Internet site of The Dutch

Home Page. http://www.dhp.nl/

[2] Yahoo! Inc. Internet site Yahoo!.
http://www.yahoo.com/

[3] D. Sullivan. Search Engine Watch,
Mecklermedia, 1996-98.
http://SearchEngineWatch.com/

[4] AltaVista Inc. The AltaVista Search
Engine.
http://www.AltaVista.com

[6] Trans-European
Research and Educational Network

13

Association (TERENA).
http://www.terena.nl/

[6] HyperText Transfer = Protocol
version 1.1, rfc 2068.
[7] Big Search-Engine Index.

http://www.merrydew.demon.co.uk

[8] BotSpot Inc. BotSpot: The Spot for
all the Bots on the Net.
http://www.botspot.com

[9] M. Koster. A Standard for Robot
Exclusion, 1994.
http://info.webcrawler.com/mak/
projects/robots/norobots.html

[10] The Harvest Information Discovery
and Access System.
http://harvest.transarc.nl

[11] TERENA Task-force = CHIC.
Cooperative Hierarchical Object
Indexing and Caching for Europe
(CHOICE)

http://www.terena.nl/
task-forces/tf-chic/

[12] A. Ard6é and S. Lundberg. A
regional distributed WWW search
and indexing service — the DESIRE
way.
http://nwi.dtv.dk/www7/

[13] Comprehensive ~ Perl Archive
Network. http://www.CPAN.org

[14] M.A.C.J. Overmeer. A Search
Interface for my Questions.
Proceedings of the TERENA-

NORDUnet Networking Conference
1999, June 1999.

My gratitude to Duncan Barclay for
corrections and improvements.

Vitae

Mark Overmeer got his MSc in Informatics from the Uni-
versity of Nijmegen, The Netherlands in 1990. Since then,
he gained professional experience in maintaining a large va-
riety of UNIX-systems, from tiny to super-computers.

In his current occupation, this knowledge is taught to
system-developers and -maintainers at AT Computing bv,
aleading training institute on UNIX and UNIX-related lan-
guages in the Netherlands.

Next to his professional activities in computers, he main-
tains a very popular Dutch Internet-site since 1995, and ac-
tively participates in development of Public Domain soft-
ware.

http://www.dhp.nl/"markov/

14

